Journal of Organometallic Chemistry, 86 (1975) C45-C46 © Elsevier Sequoia S.A., Lausanne -- Printed in The Netherlands

Preliminary communication

METAL-METAL BOND ENERGIES IN GROUP IVB-TRANSITION METAL CARBONYL DERIVATIVES AS MEASURED BY MASS SPECTROSCOPY

RICHARD A. BURNHAM and STEPHEN R. STOBART

Department of Chemistry, Queen's University, Belfast BT9 5AG (N. Ireland)

(Received December 23rd, 1974)

Summary

Bond-dissociation energies $D(M^1 - M^2)$ have been calculated from appearance potential data for the complexes $Me_3M^1M^2(CO)_x$ ($M^1 = Si$, Ge, or $Sn; M^2 = Co$, x = 4 or $M^2 = Re$, x = 5) and indicate that there is strong intermetallic bonding in these compounds, especially for $Me_3SnRe(CO)_5$, for which D(Sn-Re) is 3.7 eV (ca. 360 kJ mol⁻¹).

Recently we reported an examination of the vibrational and mass spectroscopic properties of the metal—metal bonded complexes $Me_3M^{1}Mn(CO)_5$ (M¹ = Si, Ge, or Sn) incorporating calculation of bond-dissociation energies $D(M^{1}-Mn)$ from ionization energy data [1]. Here we give a preliminary account of analogous results for corresponding tetracarbonylcobalt and pentacarbonylrhenium derivatives, which suggest for the latter the existence of a remarkably strong metal—metal interaction, especially in the case of the tin—rhenium bond.

The three cobalt complexes $Me_3M^1Co(CO)_4$ were obtained as reported previously [2]. Trimethylsilyl- and trimethylgermyl-pentacarbonylrhenium derivatives, which have not been isolated before, are colourless solids for which experimental and analytical data are given in Table 1; the tin analogue was synthesized as detailed elsewhere [3].

Calculation of bond-dissociation energies $D(M^1 - M^2)$ from appearance potential (AP) measurements as discussed earlier [1] gave the following values: (eV, ± 0.1) Me₃Ge-Co(CO)₄, 3.2; Me₃Sn-Co(CO)₄, 2.8; Me₃Si-Re(CO)₅, 3.1; Me₃Ge-Re(CO)₅, 3.2; and Me₃Sn-Re(CO)₅, 3.7. These results compare with $D(M^1 - Mn)$ near 2.5 eV for Me₃M¹Mn(CO)₅ [1]; and $D(Ge-M^2)$, $D(Sn-M^2)$ respectively in the ranges 2.03-2.81 and 2.32-3.28 eV (M² = Cr, Mo, or W) for the complexes Me₃M¹M²(π -C₅H₅)(CO)₃ determined by Lappert et al. [4]. As reported by MacDiarmid and co-workers [5], an accurate datum for Me₃SiCo(CO)₄ could not be obtained owing to its low thermal stability.

These data confirm earlier evidence [1, 3-5] for strong intermetallic bond-

PENTACARBONY LRHENIUM COMPLEXES						
Compound	М.р. ([°] С)	Analysis Found (calcd.)		^ی (CO)	ν(M−M) ^b	т(CH ₃) ^с
		С	н			
Me ₃ SiRe(CO) ₅ ^d	51-52	24.42 (24.05)	2.49 (2 25)	$2110 \\ 2010$	297	9.73
Me,GeRe(CO), ^e	53-55	21.44 (21.64)	1.82 (2.04)	2014	175	9.70

^a IR vapour phase. ^b Raman, solid. ^c Cyclohexane solution, relative to CHCl, 7 2.75 from SiMe₄ ^d From Re₂(CO)₁₀ + excess Me₃StH, 120°C, 12 days ca. 10% yield ^e From Re(CO)₅ ⁻ + GeMe₃Br in THF: 50% yield.

ing between Group IVB elements and transition metals. In particular, the D(Sn-Re) value of 3.7 eV (ca. 360 kJ mol⁻¹) appears to be the highest such bond energy yet recorded, substantially exceeding D(Sn-Sn) in Me₃SnSnMe₃ (260 kJ mol⁻¹) [6] and D(Re-Re) in (CO)₅ ReRe(CO)₅ (214 kJ mol⁻¹) [7]. Accordingly, the 70 eV mass spectrum of Me₃SnRe(CO)₅ shows a striking predominance (95%) of ion-current carried by fragments in which the metal-metal bond nominally remains intact, and the energy of the v(Sn-Re) stretching mode (151 cm⁻¹, Raman) leads to a significantly higher approximate force-constantial for the manganese analogue. A basis for rationalization of strong Sn-M bonding, particularly with M a third-row transition element has already been offered in terms of Mössbauer, 'H NMR and structural data [9] and in relation to relative orbital overlap [4] including contributions from $d_{\pi}-d_{\pi}$ -bonding effects.

More generally, the present data lend further credence to an increase [1, 4] in $D(M^{1}-M^{2})$ (M¹ = Si, Ge, or Sn) both with M² further to the right in the transition series or further down a transition-metal sub-group.

References

- 1 R.A. Burnham and S.R. Stobart, J. Chem. Soc., Dalton Trans., (1973) 1269.
- 2 G.F. Bradley and S R. Stobart, J. Chem. Soc., Dalton Trans., (1974) 264.
- 3 W. Jetz, P.B. Simons, J.A.J. Thompson and W.A.G. Graham, Inorg. Chem., 5 (1966) 2217.
- 4 D.J. Cardin, S.A. Keppie, M.F. Lappert, M.R. Litzow and T.R. Spalding, J. Chem. Soc. A, (1971) 2262.
- 5 F.E. Saalfeld, M.V. McDowell and A.G. MacDiarmid, J. Amer. Chem. Soc., 92 (1970) 2324;
 F.E. Saalfeld. M.V. McDowell, J.J. DeCorpo, A.D. Berry and A.G. MacDiarmid, Inorg. Chem., 12 (1973) 48.
- 6 M.F. Lappert, J.B. Pedley, J. Sumpson and T.R. Spalding, J. Organometal. Chem., 29 (1971) 195.
- 7 H.J. Svec and G.A. Junk, J. Amer. Chem. Soc., 89 (1967) 2836; G.A. Junk and H.J. Svec, J. Chem. Soc. A. (1970) 2102.
- 8 K.M. Mackay and S.R. Stobart, J. Chem. Soc., Dalton Trans., (1973) 214.
- 9 D.E. Fenton and J.J. Zuckerman, J. Amer. Chem. Soc., 90 (1968) 6226.

TABLE 1